Polyfluoroalkyl Substances (PFAS) in the Environment (Session 4)

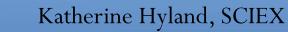
> Webinar Starts at 10:30 am Eastern Daylight Time

- > Sound will be on your computer unless you choose to call in.
 - To "Call In", click on Communicate then Audio Connection and choose to use "Call In".
 - Be sure to enter your ID number when you call or it will not link the call properly to Webex.
- > Contact Ilona or Suzanne with any difficulties.
 - <u>ilona.taunton@nelac-institute.org</u> or <u>suzanne.rachmaninoff@nelac-institute.org</u>

This session is being recorded!

Meeting Mechanics

- Phone lines and computer sound are muted when you join the call. Look for the Q&A feature in Webex and type in a Q&A question at any time during the presentation. Choose to send the question to All Panelists. Time permitting, there will be a Q&A session at the end of each presentation.
- If you have technical issues during the presentations, please use Chat to connect with TNI Training.


Polyfluoroalkyl Substances (PFAS) in the Environment (session 4)

Session Chairs: Charles Neslund, Eurofins Lancaster Laboratories Environmental and Mike Chang, Restek Corporation

 10:30 Challenges and Solutions: Approaches to Reducing Interferences and Adsorption in PFAS Environmental Analysis Matthew Giardina, Agilent Technologies, Inc.

11:00 BREAK

- 11:15 An Alternative Ionization Technique for LC-MS/MS Analysis of Perfluoroalkyl Substances (PFAS) in Environmental Samples Stuart Oehrle, Waters Corporation
- 11:45 Demonstrating Improvements in PFAS Sensitivity using a Microflow LC Approach for the EPA 537 Panel

12:15 Supercritical Fluid Extraction – A Solution for the Extraction of PFAS in Environmental Samples Ruth Marfil-Vega, Shimadzu Scientific Instruments

Challenges and Solutions: Approaches to reducing interferences and adsorption in PFAS environmental analysis

Matthew Giardina, Ph.D. Applications Chemist

August 21, 2020

Outline

- Discuss aspects of PFAS workflow optimization
- Focus on methods involving direct analysis (no solid phase extraction)

Workflow

EPA 8327

 Analysis of 24 per- and polyfluoroalkyl substances in waters and solids by LC/MS/MS. Tested on reagent water, surface water, groundwater, and wastewater.

EPA Draft Method for Soils

• Analysis of 24 per- and polyfluoroalkyl substances in **soils** by LC/MS/MS. Tested on **sand, silt, fat clay, and lean clay**.

ASTM D7979-19

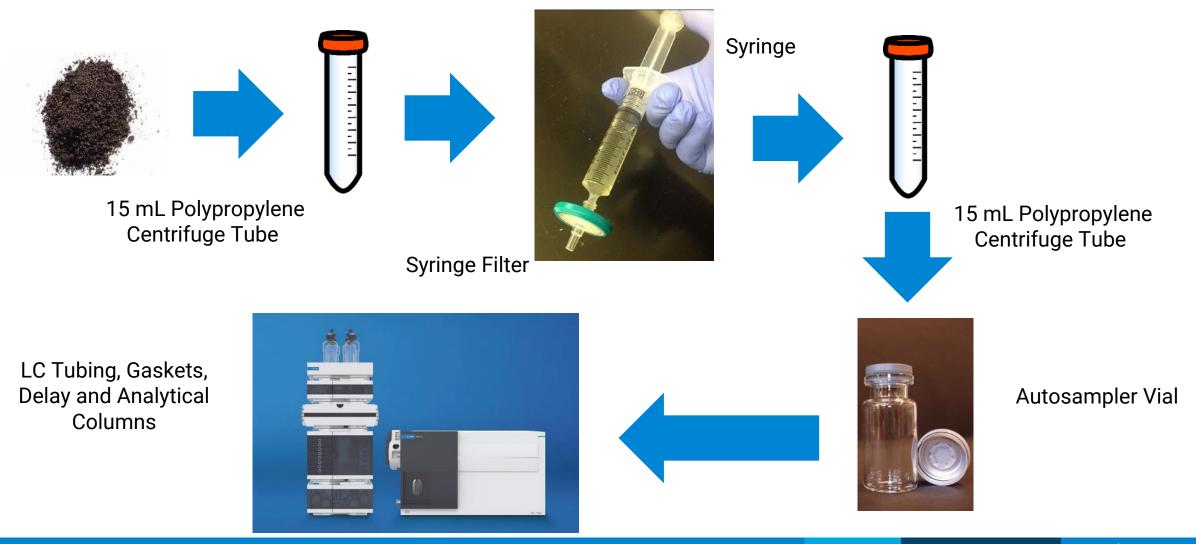
• Analysis of 21 per- and polyfluoroalkyl substances in a water, sludge, influent, effluent, and wastewater by LC/MS/MS.

ASTM D7968-17a

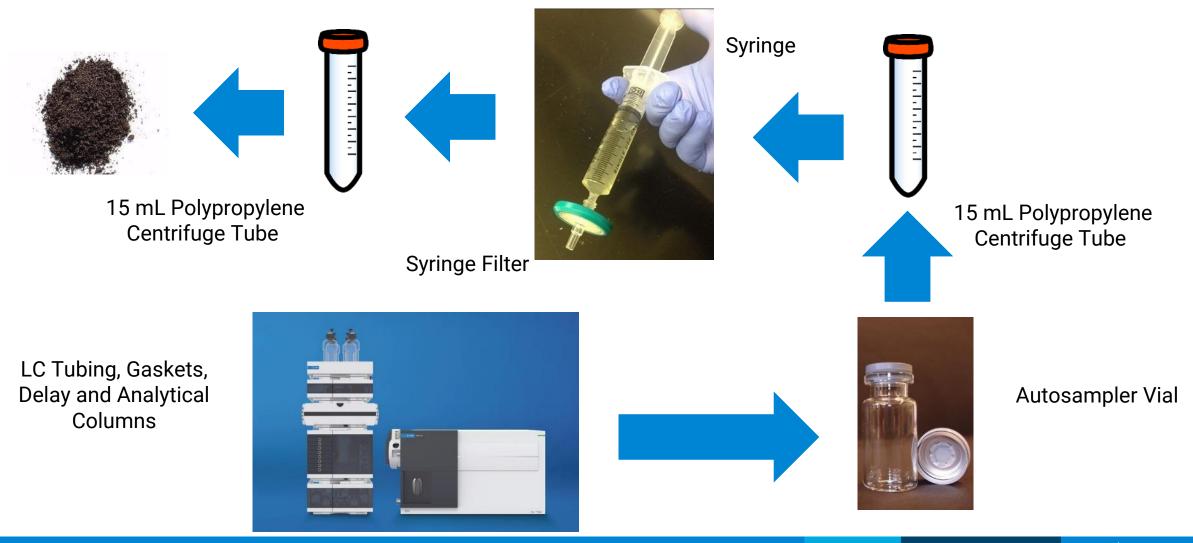
 Analysis of 21 per- and polyfluoroalkyl substances in a soil by LC/MS/MS. Tested on sand, silt, fat clay, and lean clay. Similar sample workflow

 Extraction/dilution with methanol/water

- Filtration
- LC/MS/MS


Compound List (8327 & EPA Draft Soil Method)

Targets	Surrogates
Perfluorobutyl sulfonic acid (PFBS)	Perfluoro-1-[1,2,3-13C3]hexyl sulfonic acid (M3PFHxS)
Perfluorohexyl sulfonic acid (PFHxS)	Perfluoro-1-[¹³ C8]octyl sulfonic acid (M8PFOS)
Perfluorooctyl sulfonic acid (PFOS)	Perfluoro-n-[¹³ C4]butanoic acid (M4PFBA)
1H, 1H, 2H, 2H-Perfluorohexane sulfonic acid (4:2 FTS)	Perfluoro-n-[¹³ C5]pentanoic acid (M5PFPeA)
1H, 1H, 2H, 2H-Perfluorodecane sulfonic acid (8:2 FTS)	Perfluoro-n-[1,2,3,4,6-13C5]hexanoic acid (M5PFHxA)
Perfluoro-1-pentanesulfonic acid (PFPeS)	Perfluoro-n-[1,2,3,4- ¹³ C4]heptanoic acid (M4PFHpA)
Perfluoro-1-heptanesulfonic acid (PFHpS)	Perfluoro-n-[¹³ C8]octanoic acid (M8PFOA)
Perfluoro-1-nonanesulfonic acid (PFNS)	Perfluoro-n-[¹³ C9]nonanoic acid (M9PFNA)
Perfluoro-1-decanesulfonic acid (PFDS)	Perfluoro-n-[1,2,3,4,5,6-13C6]decanoic acid (M6PFDA)
Perfluorobutanoic acid (PFBA)	Perfluoro-n-[1,2,3,4,5,6,7-13C7]undecanoic acid (M7PFUnA)
Perfluoropentanoic acid (PFPeA)	Perfluoro-n-[1,2-13C2]dodecanoic acid (MPFDoA)
Perfluorohexanoic acid (PFHxA)	Perfluoro-n-[1,2-13C2]tetradecanoic acid (M2PFTeDA)
Perfluoroheptanoic acid (PFHpA)	1H, 1H, 2H, 2H-Perfluoro-(1,2- ¹³ C2) hexyl sulfonic acid (M2-4:2 FTS)
Perfluorooctanoic acid (PFOA)	1H, 1H, 2H, 2H-Perfluoro-1(1,2- ¹³ C2) decyl sulfonic acid (M2-8:2 FTS)
Perfluorononanoic acid (PFNA)	N-Methyl-d3-perfluoro-1-octanesulfonamidoacetic acid (d3-N-MeFOSAA)
Perfluorodecanoic acid (PFDA)	N-Ethyl-d5-perfluoro-1-octanesulfonamidoacetic acid (d5-N-EtFOSAA)
Perfluoroundecanoic acid (PFUdA)	Perfluoro-1-[¹³ C8]octanesulfonamide (M8FOSA)
Perfluorododecanoic acid (PFDoA)	Perfluoro-1-[2,3,4-13C3]butyl sulfonic acid (M3PFBS)
Perfluorotridecanoic acid (PFTrDA)	1H, 1H, 2H, 2H-perfluoro-1(1,2- ¹³ C2) octyl sulfonic acid (M2-8:2 FTS)
Perfluorotetradecanoic acid (PFTeDA)	
N-Ethylperfluoro-1-octanesulfonamidoacetic acid (NEtFOSAA)	
N-Methylperfluoro-1-octanesulfonamidoacetic acid (NMeFOSAA)	
Perfluoro-1-octanesulfonamide (FOSA)	
1H, 1H, 2H, 2H-Perfluorooctane sulfonic acid (6:2 FTS)	



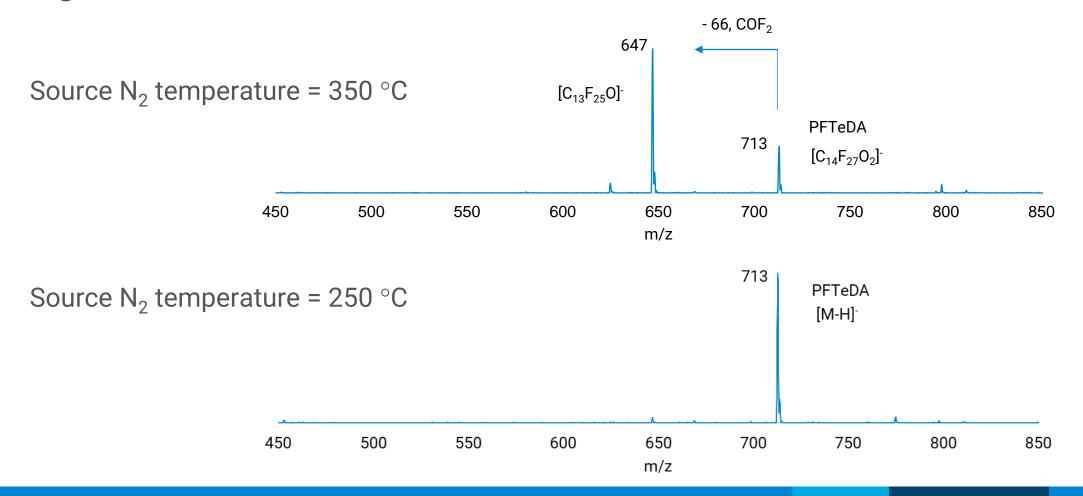
PFAS Direct Analysis – Consumables are Critical to the Workflow

Sample workflow

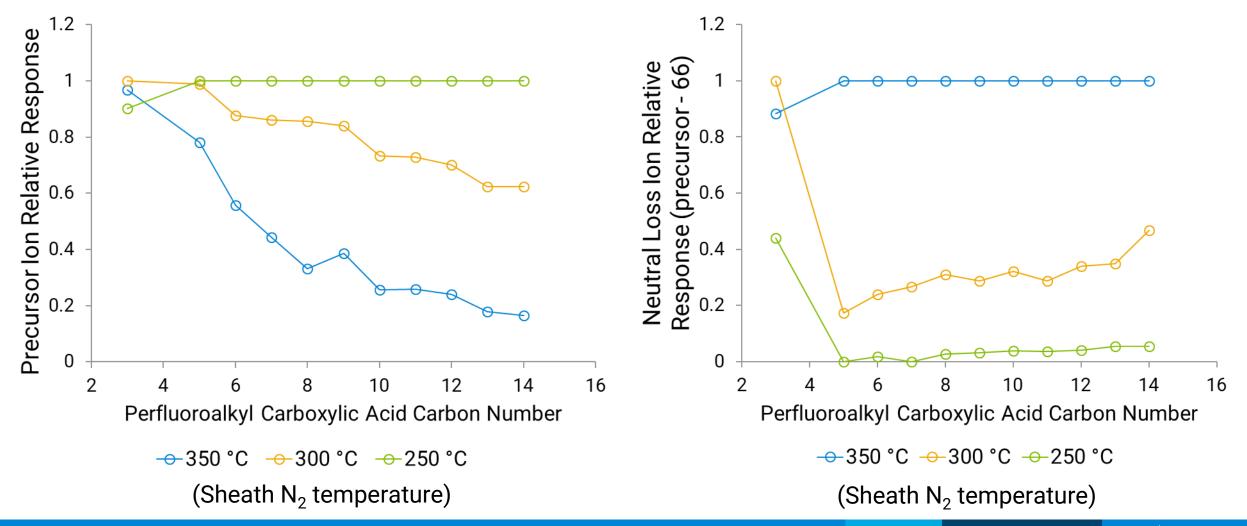
PFAS Direct Analysis – Consumables are Critical to the Workflow Optimization workflow

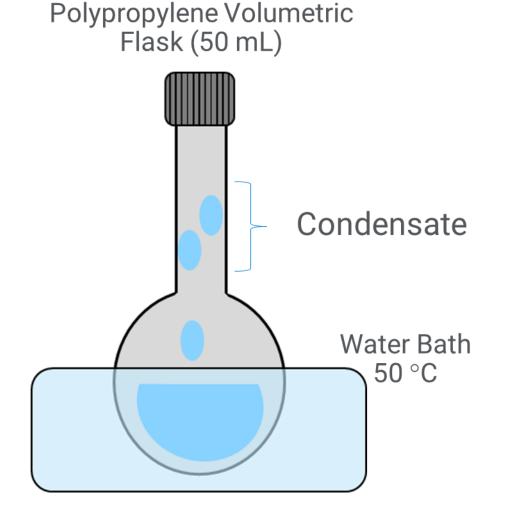
Analysis – Special PFAS Considerations

- Thermal lability of some PFAS compounds
- Analyte sorption to containers
- Column selection consideration
- Analysis method


- Reduce LC/MS/MS system PFAS background
- Add delay column
- Use high purity solvents

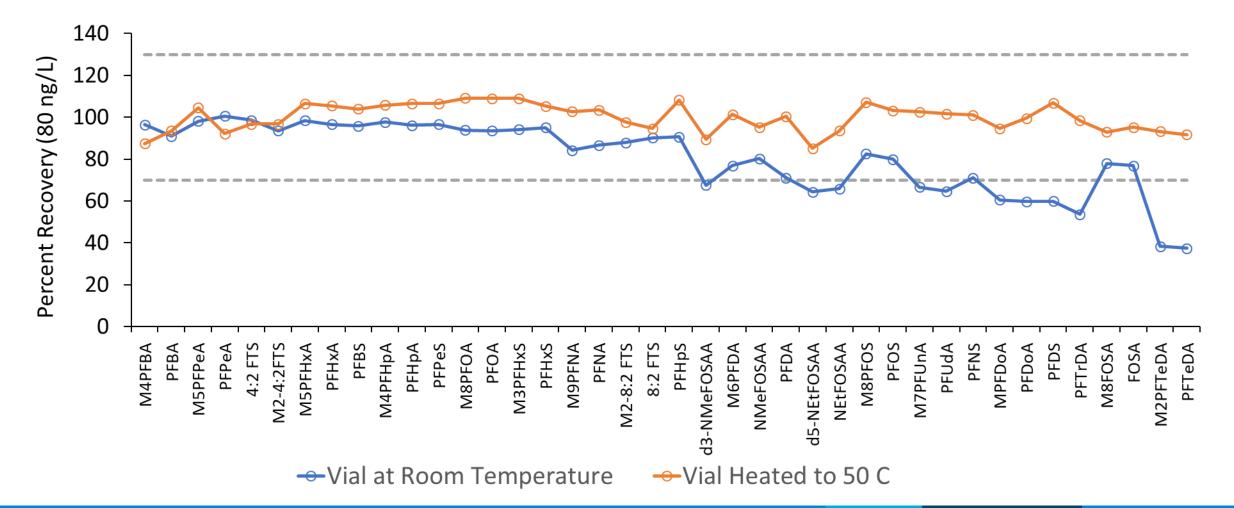
PFAS Thermal Lability of Perfluoroalkyl Acids

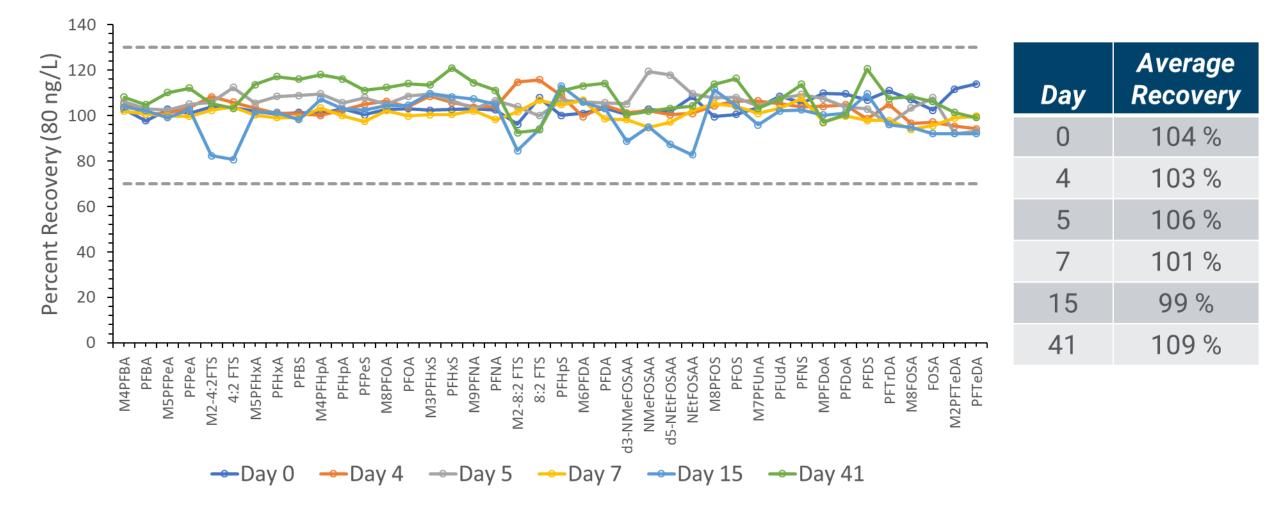

Ion source temperatures that are too high can cause thermal degradation of acids


PFAS Thermal Lability of Perfluoroalkyl Acids

Lability increases with alkyl chain length

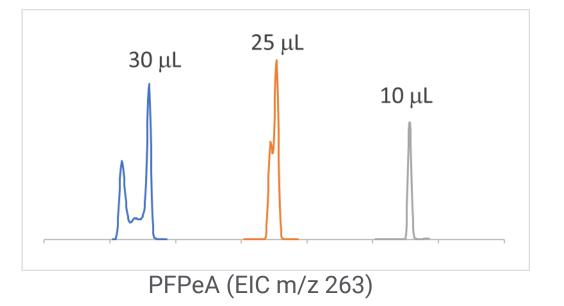
Loss of Analytes in Storage Vials and Containers

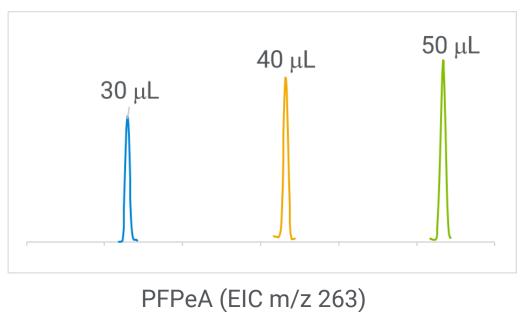

- "Reduced solubility or sorptive losses can occur particularly for stock solutions stored at \leq 6 °C."
- <u>Bringing solutions to room temperature is not</u> <u>sufficient to reduce these losses.</u>
- Heating stock solutions in a water bath at 50 °C for up to 30 minutes followed by vortexing was sufficient at reducing losses.
- Reused stock solution (200 ng/L 50/50 methanol/water) for over a month stored in a 50 mL volumetric flask at 4 °C and no evaporative losses was evident after repeated heating.


Loss of Analytes in Storage Vials and Containers

Heating stock compared to not heating stock

Loss of Analytes in Storage Vials and Containers


Heating/cooling cycles over 41 days


Column Loading

- A large injection volume is required to improve detection (10 to 30 μ L).
- This problem is amplified by the injection in a relatively strong diluent (50/50 methanol/water).
- Column selection is important to achieving good peak shape with large injection volume.

Peak splitting for early eluters

Zorbax Eclipse Plus C18, 2.1 x 150 mm, 1.8 μ m

Instrumental Analysis Method

Parameter	Value					
MS	Agilent 6470 Triple Quadrupole with Agilent Jet Stream ESI Source					
	Source Parameters					
Polarity	Negative					
Drying Gas	230 °C, 4 L/min					
Sheath Gas	250 °C, 12 L/min					
Nebulizer Gas	15 psi					
Capillary Voltage	2500 V					
Nozzle Voltage	0 V					
	Acquisition					
Cycle Time	500 ms					
Total MRMs	61					
Max Concurrent MRM	30					
Min/Max Dwell	14.18 ms/247.76 ms					

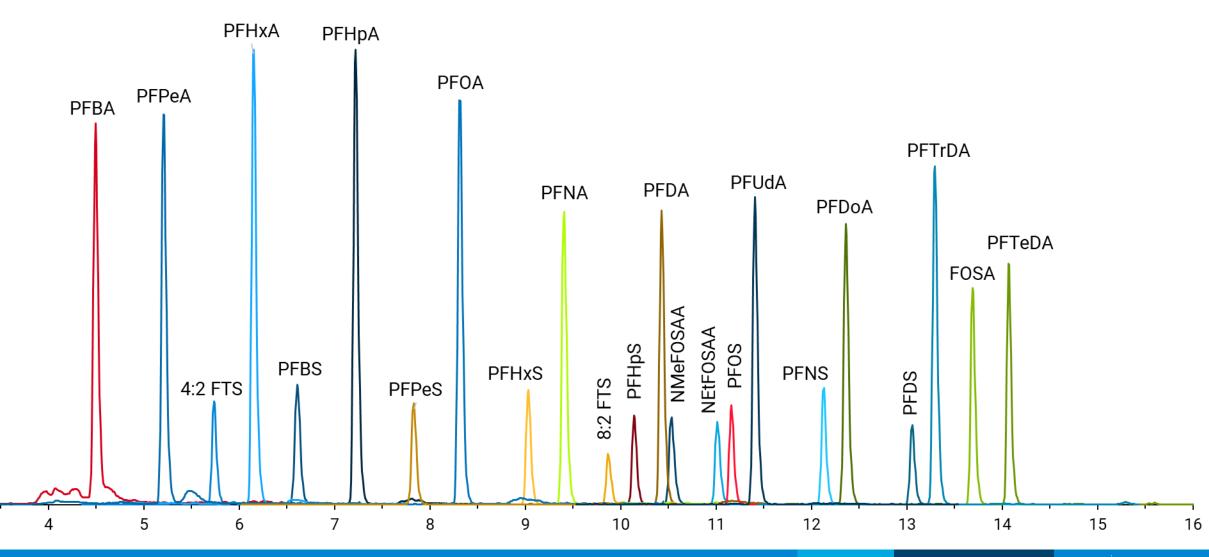
Parameter	Value								
LC	Agilent 129	gilent 1290 Infinity II LC System							
Analytical Column	Zorbax RR E	Corbax RR Eclipse Plus C18, 2.1 x 100 mm, 1.8 μm							
Delay Column	InfinityLab F	PFC Delay Column							
Column Temperature	30 °C								
Injection Volume	30 μL								
Mobile Phase	 A. 20 mM Ammonium acetate in 95% water/5 % acetonitrile B. 10 mM ammonium acetate in 95% acetonitrile/5% water 								
	Time (min)	A%	В%	Flow (mL/mim)					
	0	100	0	0.3					
	1	70	30	0.3					
	6	50	50	0.3					
Gradient	13	15	85	0.3					
	14	0	100	0.4					
	17	0	100	0.4					
	18	100	0	0.4					
	21	100	0	0.4					

Calibration

Target calibration accuracy and correlation coefficient of determination (5 to 200 ng/L)

Concen (ng/L)	PFBA	PFPeA	4:2 FTS	PFHxA	PFBS	PFHpA	PFPeS	PFOA	PFHxS	PFNA	8:2 FTS	PFHpS	PFDA	Nme- FOSAA	Net- FOSAA	PFOS	PFUdA	PFNS	PFDoA	PFDS	PFTrDA	FOSA	PFTeDA
5	99	95	101	99	100	92	89	99	96	94	101	73	87	95	113	94	88	91	102	90	105	107	103
10	103	103	114	101	96	106	98	94	101	106	95	107	110	105	87	105	102	98	97	105	90	92	94
20	99	99	83	95	100	99	109	102	101	92	98	114	88	96	85	94	95	98	85	93	87	95	82
40	98	99	98	102	100	99	103	101	99	103	100	103	107	100	103	104	108	106	110	107	113	103	118
60	99	103	99	101	104	102	103	102	100	102	101	104	109	102	108	100	104	106	101	101	98	102	97
80	98	101	104	101	101	103	100	103	103	103	108	100	103	103	108	101	109	105	110	107	111	102	114
100	106	101	103	103	101	101	100	101	104	103	101	104	102	101	105	107	101	101	99	103	100	101	98
150	99	100	100	101	102	102	101	101	101	99	100	97	100	103	97	100	99	99	100	100	102	101	99
200	100	98	99	97	97	97	97	97	97	98	96	97	95	96	96	96	95	96	96	95	94	97	95
R ²	0.999	1.000	0.998	0.999	0.999	0.999	0.999	0.999	0.999	0.999	0.998	0.997	0.996	0.999	0.995	0.998	0.997	0.998	0.996	0.997	0.994	0.999	0.991

Calibration


Surrogate calibration accuracy and correlation coefficient of determination (5 to 200 ng/L)

Concen (ng/L)	M4PFBA	M5PFPeA	M2-4:2FTS	M5PFHxA	M4PFHpA	M8PFOA	M3PFHxS	M9PFNA	M2-8:2 FTS	M6PFDA	d3- NMeFOSAA	d5- NEtFOSAA	M8PFOS	M7PFUnA	MPFDoA	M8FOSA	M2PFTeDA
5	96	98	103	99	97	95	104	109	90	91	102	101	93	96	94	111	105
10	103	101	97	101	102	104	88	94	113	101	89	99	102	96	103	87	91
20	96	95	93	97	99	98	104	88	93	99	102	94	99	96	91	94	85
40	101	104	102	100	99	101	100	105	113	108	104	107	103	108	107	103	114
60	103	100	102	102	100	101	104	100	93	102	108	102	104	104	100	102	100
80	103	103	104	102	101	103	102	103	96	101	100	102	100	104	110	107	112
100	103	102	101	101	104	103	100	103	104	101	97	97	101	101	98	99	99
150	100	101	99	101	101	99	103	102	95	102	99	99	102	99	104	100	101
200	97	97	99	98	97	98	96	97	103	96	99	100	97	97	94	98	94
R ²	0.999	0.999	0.999	1.000	0.999	0.999	0.998	0.998	0.996	0.998	0.999	0.999	0.999	0.998	0.996	0.998	0.994

Chromatogram

Midpoint calibration (80 ng/L)

Agilent

3

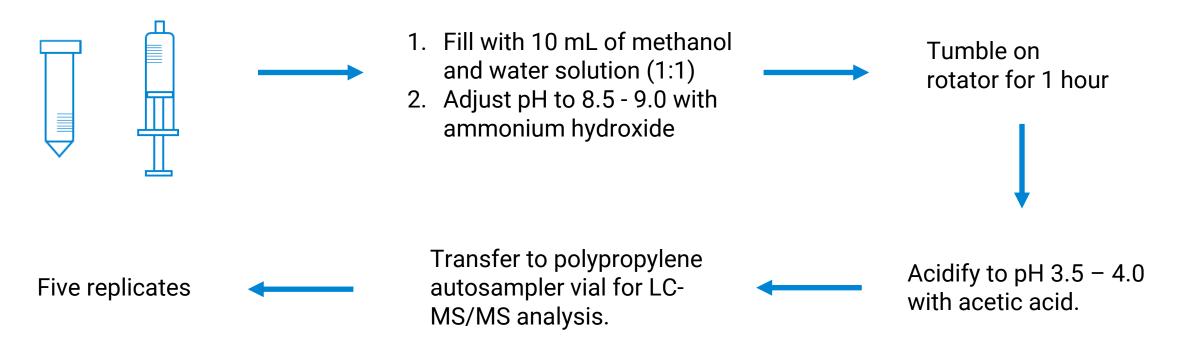
Evaluation of Consumables

15 mL Polypropylene Centrifuge Tube

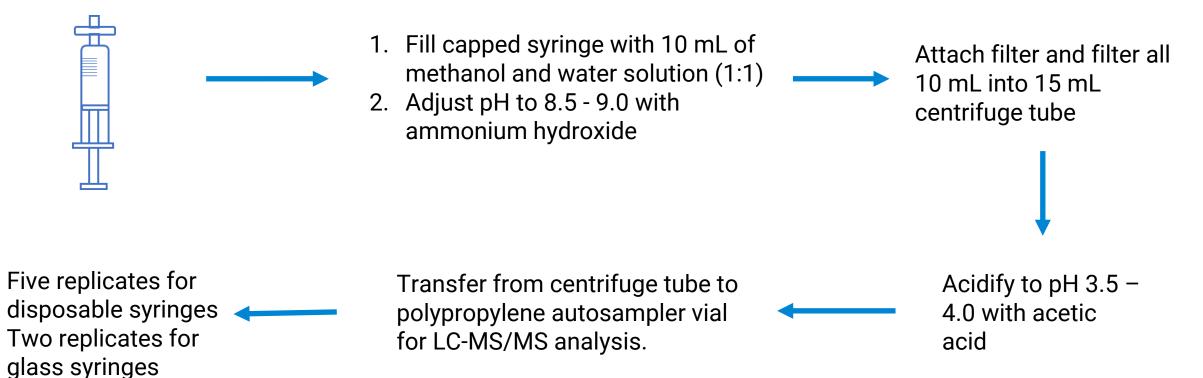
Disposable Syringes

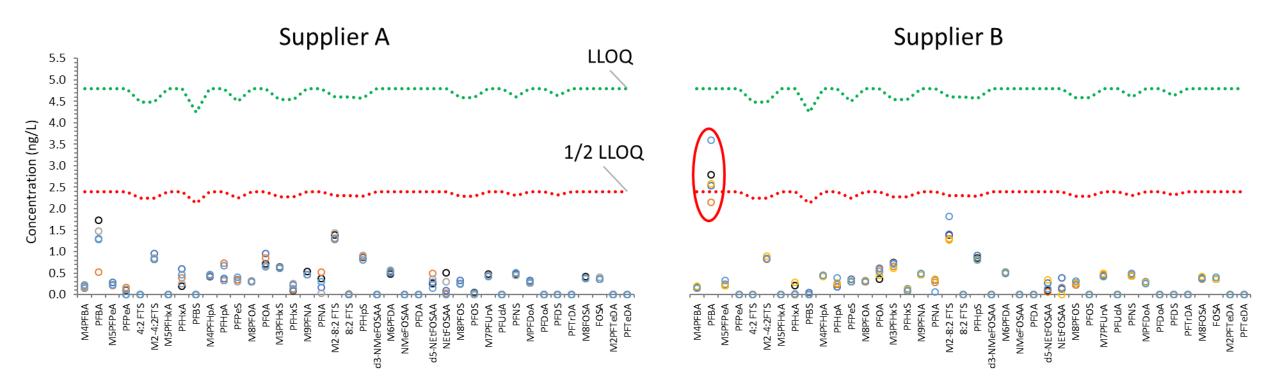
Syringe Filters

Study Objectives

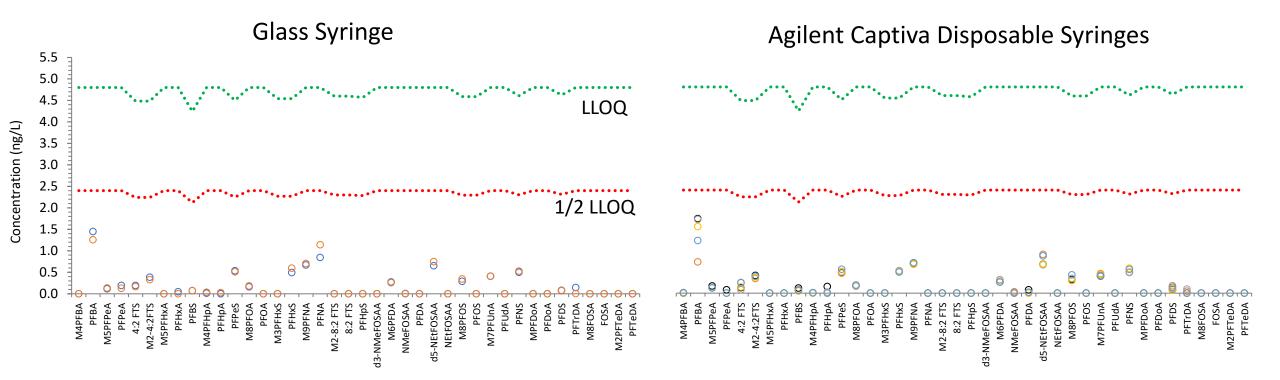

- 1. Demonstrate that 15 mL centrifuge tubes, syringes, and syringe filters are free from PFAS contamination (i.e. less than ½ LLOQ) and do not interfere with low-level quantitation.
- 2. Demonstrate that the 15 mL centrifuge tubes, syringes, and syringe filters do not adsorb PFAS compounds and do not interfere with low-level quantitation.
- 3. Determine appropriate syringe filter material.

Test procedure for tubes and syringes


Centrifuge Tubes and Syringes

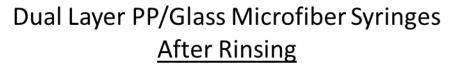

Test procedure for syringe filters

Syringe Filters

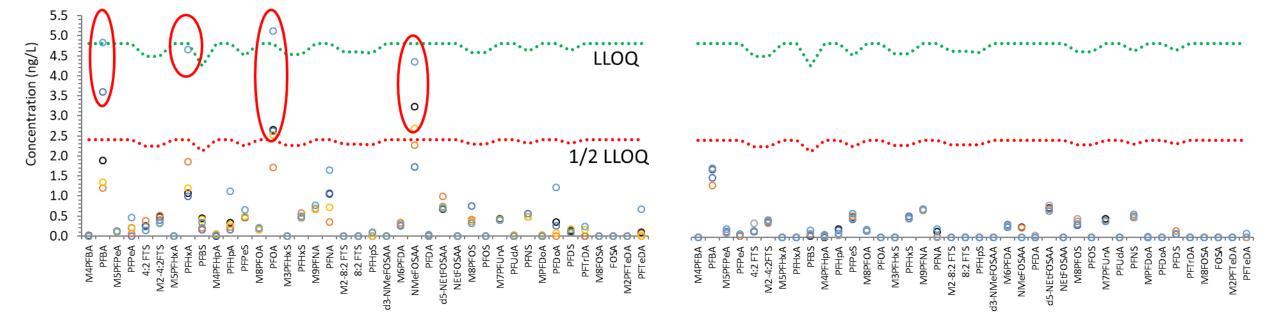


Results for 15 mL polypropylene centrifuge tubes (tested 4 suppliers, 2 shown)

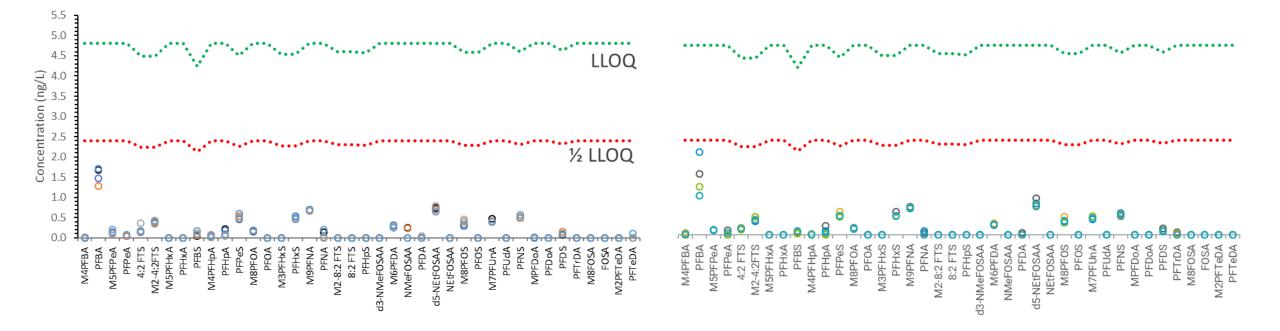
Comparison of 10 mL polypropylene disposable and glass syringe



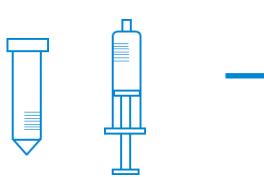
Disposable syringes provide a significant savings in time and solvent usage



- The soil methods were validated with polypropylene/glass microfiber syringe filters
- These filters required rinsing to reduce background before use


Agilent

- Regenerated cellulose filters were tested as a replacement for the polypropylene/glass microfiber filters
- Regenerated cellulose filters did not require rinsing before use


Agilent Captiva RC Syringe Filters Not Rinsed

Test procedure for tubes and syringes

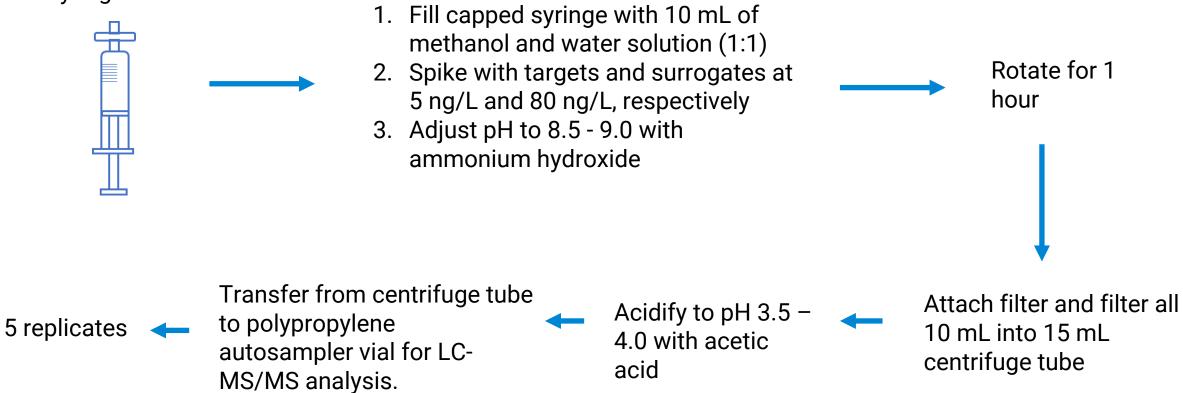
Centrifuge Tubes and Syringes

1.	Fill with 10 mL of methanol and
	water solution (1:1)

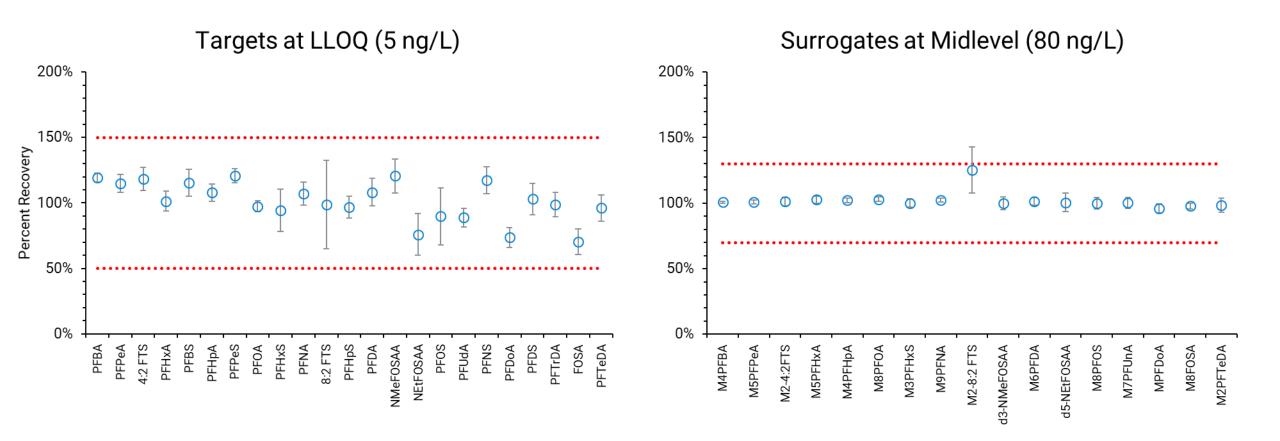
- Spike with targets and surrogates at 5 ng/L and 80 ng/L, respectively
- 3. Adjust pH to 8.5 9.0 with ammonium hydroxide

Tumble on rotator for 1 hour

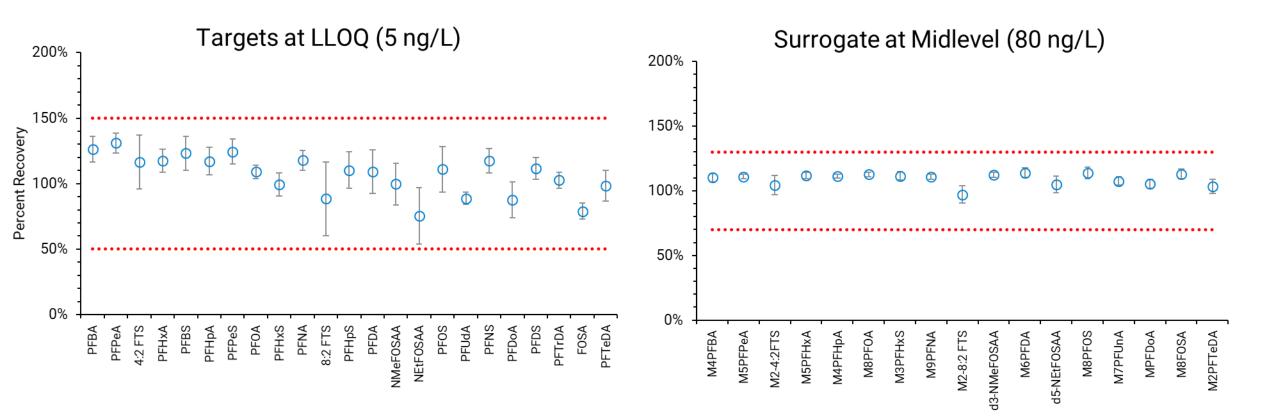
Five replicates


Transfer to polypropylene autosampler vial for LC-MS/MS analysis.

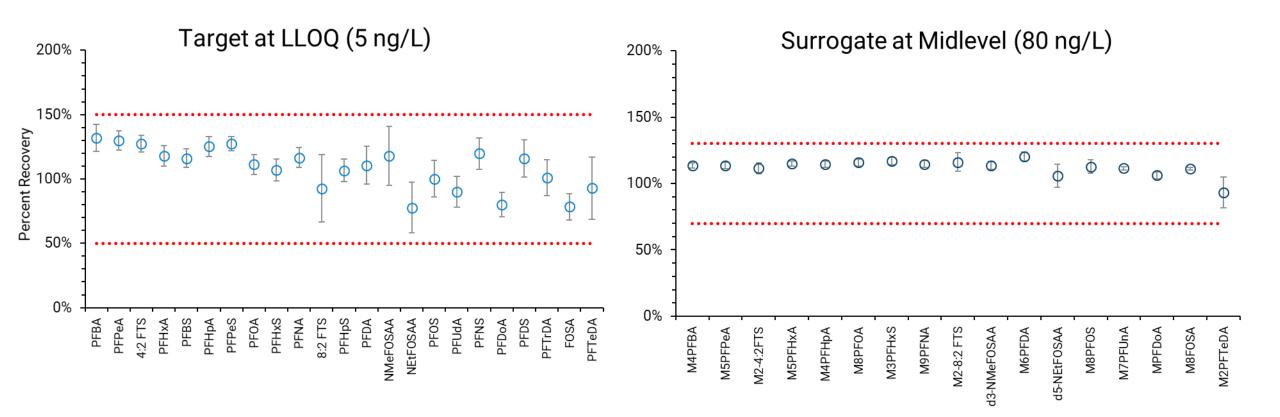
Acidify to pH 3.5 - 4.0 with acetic acid.



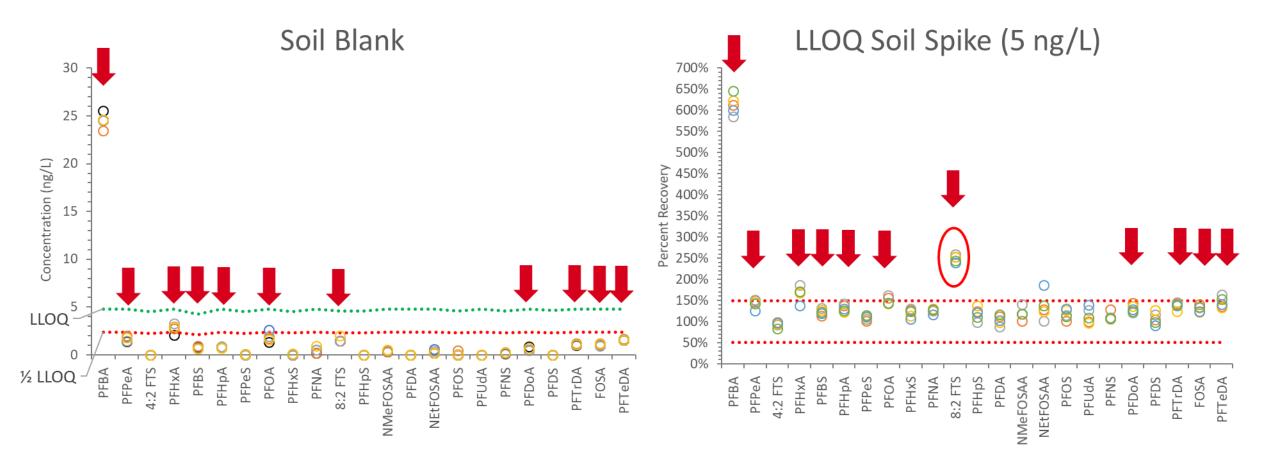
Test procedure for syringe filters


Syringe Filters

Results for 15 mL polypropylene centrifuge tubes



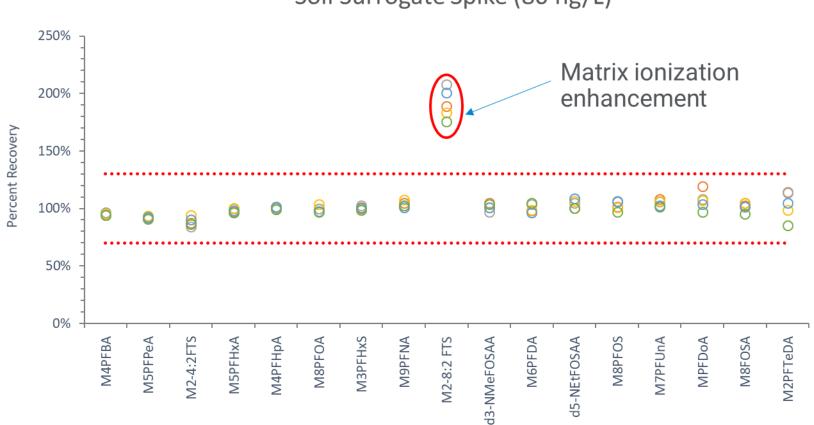
Results for polypropylene disposable syringes



Results for regenerated cellulose syringe filters

Soil Extract

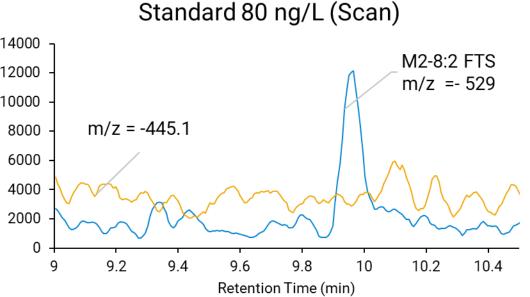
- Clean sandy loam 6 replicates
- Low levels of PFAS present



35

Soil Extract

Clean sandy loam – 6 replicates


Soil Surrogate Spike (80 ng/L)

Soil Extract

Matrix Ionization Enhancement – approximately 2x response increase

m/z -445.1 not yet identified

Filter Membrane

Matrix Ionization Enhancement – also observed PP filter media

Midlevel Surrogate (80 ng/l)

Equipment & Supplies

Description	Agilent Part Number
Polypropylene autosampler vials and snap caps	5182-0567 and 5182-054
50 mL polypropylene volumetric flask	9301-1424
Captiva disposable syringes (10 mL)	9301-6474
Captiva premium syringe filters, regenerated cellulose	5190-5110
Zorbax RR Eclipse Plus C18, 2.1 x 100 mm, 1.8 μm	959758-902
HPLC	1290 Infinity II LC System
MS/MS	6470 Triple Quadrupole
Ion Source	Jet Stream ESI

Available September 1, 2020!	
InfinityLab PFC Delay Column	5062-8100
InfinityLab PFC-free HPLC conversion kit	5004-0006

Conclusion

- Workflow approach to method optimization is key for creating robust methods for PFAS analysis
- Establishing best practices for each step in the sample extraction, handling, separation, and detection is necessary to maximize recoveries and obtain lowlevel detection limits
- Selection of sample containers, syringes, filters, columns, and instrumentation suitable for PFAS analysis is critical to workflow optimization

Contact: matthew_giardina@agilent.com

